Journal of Human Genetics and Genomics

Published by: Kowsar

A Review of Artificial Genetic Constructs and Their Applications as Positive Controls

Mohammad Ali Yaghobi Moghaddam 1 and Mohammad Javad Dehghan Esmatabadi 1 , *
Authors Information
1 Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
Article information
  • Journal of Human Genetics and Genomics: June 30, 2019, 3 (1); e99853
  • Published Online: January 5, 2020
  • Article Type: Review Article
  • Received: December 2, 2019
  • Accepted: December 29, 2019
  • DOI: 10.5812/jhgg.jhgg-99853

How to Cite: Yaghobi Moghaddam M A , Dehghan Esmatabadi M J . A Review of Artificial Genetic Constructs and Their Applications as Positive Controls, J Human Gen Genom. 2019 ; 3(1):e99853. doi: 10.5812/jhgg.jhgg-99853.

Copyright © 2020, Journal of Human Genetics and Genomics. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Artificial Genetic Construct
3. Platform for Design and Synthesis of an Artificial Genetic Construct
4. Category of Artificial Genetic Construct
  • 1. Sadava DE, Heller HC, Purves WK, Orians GH, Hillis DM. Life: The science of biology. MacMillan; 2008.
  • 2. Bello S, Moustgaard H, Hrobjartsson A. The risk of unblinding was infrequently and incompletely reported in 300 randomized clinical trial publications. J Clin Epidemiol. 2014;67(10):1059-69. doi: 10.1016/j.jclinepi.2014.05.007. [PubMed: 24973822].
  • 3. Sagripanti JL, Carrera M. Artificial chimeras engineered to simulate multiple biological threat agents. Google Patents; 2010.
  • 4. Carrera M, Sagripanti JL. Non-infectious plasmid engineered to simulate multiple viral threat agents. J Virol Methods. 2009;159(1):29-33. doi: 10.1016/j.jviromet.2009.02.021. [PubMed: 19442841].
  • 5. Carrera M, Sagripanti JL. Artificial plasmid engineered to simulate multiple biological threat agents. Appl Microbiol Biotechnol. 2009;81(6):1129-39. doi: 10.1007/s00253-008-1715-8. [PubMed: 18923830].
  • 6. Brown TA. Gene cloning and DNA analysis: An introduction. John Wiley & Sons; 2016.
  • 7. Imanaka T, Aiba S. A perspective on the application of genetic engineering: Stability of recombinant plasmid. Ann N Y Acad Sci. 1981;369:1-14. doi: 10.1111/j.1749-6632.1981.tb14172.x. [PubMed: 7020540].
  • 8. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317-34. doi: 10.1007/s40259-017-0234-5. [PubMed: 28669112]. [PubMed Central: PMC5548848].
  • 9. Inoue S, Noguchi A, Tanabayashi K, Yamada A. Preparation of a positive control DNA for molecular diagnosis of Bacillus anthracis. Jpn J Infect Dis. 2004;57(1):29-32.
  • 10. Boonham N, Fisher T, Mumford RA. Investigating the specificity of real-time PCR assays using synthetic oligonucleotides. J Virol Methods. 2005;130(1-2):30-5. doi: 10.1016/j.jviromet.2005.05.029. [PubMed: 16051376].
  • 11. Christensen TM, Jama M, Ponek V, Lyon E, Wilson JA, Hoffmann ML, et al. Design, development, validation, and use of synthetic nucleic acid controls for diagnostic purposes and application to cystic fibrosis testing. J Mol Diagn. 2007;9(3):315-9. doi: 10.2353/jmoldx.2007.060180. [PubMed: 17591930]. [PubMed Central: PMC1899420].
  • 12. Kruttgen A, Razavi S, Imohl M, Ritter K. Real-time PCR assay and a synthetic positive control for the rapid and sensitive detection of the emerging resistance gene New Delhi Metallo-beta-lactamase-1 (bla(NDM-1)). Med Microbiol Immunol. 2011;200(2):137-41. doi: 10.1007/s00430-011-0189-y. [PubMed: 21350860].
  • 13. Charrel RN, La Scola B, Raoult D. Multi-pathogens sequence containing plasmids as positive controls for universal detection of potential agents of bioterrorism. BMC Microbiol. 2004;4:21. doi: 10.1186/1471-2180-4-21. [PubMed: 15147587]. [PubMed Central: PMC425577].
  • 14. Sohni Y, Kanjilal S, Kapur V. Cloning and development of synthetic internal amplification control for Bacillus anthracis real-time polymerase chain reaction assays. Diagn Microbiol Infect Dis. 2008;61(4):471-5. doi: 10.1016/j.diagmicrobio.2008.04.005. [PubMed: 18513914].
  • 15. Boonsuk P, Payungporn S, Chieochansin T, Samransamruajkit R, Amonsin A, Songserm T, et al. Detection of influenza virus types A and B and type A subtypes (H1, H3, and H5) by multiplex polymerase chain reaction. Tohoku J Exp Med. 2008;215(3):247-55. doi: 10.1620/tjem.215.247. [PubMed: 18648185].
  • 16. Caasi DR, Arif M, Payton M, Melcher U, Winder L, Ochoa-Corona FM. A multi-target, non-infectious and clonable artificial positive control for routine PCR-based assays. J Microbiol Methods. 2013;95(2):229-34. doi: 10.1016/j.mimet.2013.08.017. [PubMed: 24013035].
  • 17. Karlsson E, Macellaro A, Bystrom M, Forsman M, Frangoulidis D, Janse I, et al. Eight new genomes and synthetic controls increase the accessibility of rapid melt-MAMA SNP typing of Coxiella burnetii. PLoS One. 2014;9(1). e85417. doi: 10.1371/journal.pone.0085417. [PubMed: 24465554]. [PubMed Central: PMC3897454].
  • 18. Arif M, Opit G, Mendoza-Yerbafria A, Dobhal S, Li Z, Kucerova Z, et al. Array of synthetic oligonucleotides to generate unique multi-target artificial positive controls and molecular probe-based discrimination of liposcelis species. PLoS One. 2015;10(6). e0129810. doi: 10.1371/journal.pone.0129810. [PubMed: 26086728]. [PubMed Central: PMC4472718].
  • 19. Dobhal S, Olson JD, Arif M, Garcia Suarez JA, Ochoa-Corona FM. A simplified strategy for sensitive detection of Rose rosette virus compatible with three RT-PCR chemistries. J Virol Methods. 2016;232:47-56. doi: 10.1016/j.jviromet.2016.01.013. [PubMed: 26850142].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments